MathNet.Numerics.Signed 3.0.0-beta04

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
49
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
45
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
37
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
36
NPOI
.NET port of Apache POI
33
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
31
NPOI
.NET port of Apache POI
17
NPOI
.NET port of Apache POI
9

Candidate for v3.0 Release Linear Algebra: FoldRows renamed to FoldByRow, now operates on and returns arrays; same for columns New FoldRows and ReduceRows that operate on row vectors; same for columns Split Map into Map and MapConvert (allows optimization in common in-place case) Row and columns sums and absolute-sums F# DiagonalMatrix module to create diagonal matrices without using the builder F# Matrix module extended with sumRows, sumAbsRows, normRows; same for columns Build: extend build and release automation, automatic releases also for data extensions and native providers

This package has no dependencies.

Version Downloads Last updated
5.0.0 43 3/4/2024
5.0.0-beta02 36 3/9/2024
5.0.0-beta01 38 3/9/2024
5.0.0-alpha16 36 3/9/2024
5.0.0-alpha15 46 3/9/2024
5.0.0-alpha14 38 3/9/2024
5.0.0-alpha11 41 3/9/2024
5.0.0-alpha10 37 3/9/2024
5.0.0-alpha09 42 3/9/2024
5.0.0-alpha08 34 3/9/2024
5.0.0-alpha07 33 3/9/2024
5.0.0-alpha06 40 3/9/2024
5.0.0-alpha05 39 3/9/2024
5.0.0-alpha04 36 3/9/2024
5.0.0-alpha03 40 3/9/2024
5.0.0-alpha02 38 3/9/2024
5.0.0-alpha01 38 3/9/2024
4.15.0 41 3/4/2024
4.14.0 41 3/4/2024
4.13.0 34 3/4/2024
4.12.0 43 3/4/2024
4.11.0 48 3/4/2024
4.10.0 53 3/4/2024
4.9.1 43 3/4/2024
4.9.0 43 3/4/2024
4.8.1 48 3/4/2024
4.8.0 39 3/4/2024
4.8.0-beta02 33 3/9/2024
4.8.0-beta01 39 3/9/2024
4.7.0 42 3/4/2024
4.6.0 45 3/4/2024
4.5.0 41 3/4/2024
4.4.1 35 3/4/2024
3.20.2 33 3/4/2024
3.20.1 34 3/4/2024
3.20.0 33 3/4/2024
3.20.0-beta01 34 3/9/2024
3.19.0 30 3/4/2024
3.18.0 36 3/4/2024
3.17.0 39 3/4/2024
3.16.0 36 3/4/2024
3.15.0 38 3/4/2024
3.14.0-beta03 40 3/9/2024
3.14.0-beta02 39 3/9/2024
3.14.0-beta01 37 3/9/2024
3.13.1 40 3/4/2024
3.13.0 37 3/4/2024
3.12.0 35 3/4/2024
3.11.1 32 3/4/2024
3.11.0 35 3/4/2024
3.10.0 36 3/4/2024
3.9.0 35 3/4/2024
3.8.0 41 3/4/2024
3.7.1 40 3/4/2024
3.7.0 44 3/4/2024
3.6.0 40 3/4/2024
3.5.0 45 3/4/2024
3.4.0 38 3/4/2024
3.3.0 43 3/4/2024
3.3.0-beta2 31 3/4/2024
3.3.0-beta1 35 3/4/2024
3.2.3 38 3/4/2024
3.2.2 35 3/4/2024
3.2.1 36 3/4/2024
3.2.0 41 3/4/2024
3.1.0 48 3/4/2024
3.0.2 36 3/4/2024
3.0.1 39 3/4/2024
3.0.0 35 3/4/2024
3.0.0-beta05 37 3/9/2024
3.0.0-beta04 39 3/9/2024
3.0.0-beta03 35 3/9/2024
3.0.0-beta02 32 3/9/2024
3.0.0-beta01 43 3/9/2024
3.0.0-alpha9 40 3/9/2024
3.0.0-alpha8 30 3/9/2024
3.0.0-alpha7 41 3/9/2024
3.0.0-alpha6 33 3/9/2024
3.0.0-alpha5 32 3/9/2024
2.6.1 37 3/4/2024
2.6.0 48 3/4/2024
2.5.0 39 3/4/2024
2.4.0 47 3/4/2024
2.3.0 45 3/4/2024
2.2.1 44 3/4/2024