MathNet.Numerics.Signed 3.15.0

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
23
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
21
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
20
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
19
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
14
NPOI
.NET port of Apache POI
13
NPOI
.NET port of Apache POI
8

FFT: MKL native provider backend. FFT: 2D and multi-dimensional FFT (only supported by MKL provider, managed provider pending). FFT: real conjugate-even FFT (only leveraging symmetry in MKL provider). FFT: managed provider significantly faster on x64. Linear Algebra: pointwise trigonometric and basic functions ~Albert Pang Linear Algebra: better support for F# built-in operators (sqrt, sin, exp, ..) ~Albert Pang Linear Algebra: pointwise power operator (F#) Linear Algebra: enable experimental matrix product implementation Linear Algebra: better support for matrix to/from row-major arrays and enumerables Linear Algebra: transport allows specifying a result matrix to transpose into, inplace if square Linear Algebra: vector and matrix AsArray and similar to access internal arrays if applicable Linear Algebra: vector and matrix pointwise min/max and absmin/absmax Linear Algebra: dot-power on vectors and matrices, supporting native providers. Linear Algebra: matrix Moore-Penrose pseudo-inverse (SVD backed). Provider Control: separate Control classes for LA and FFT Providers. Provider Control: avoid internal exceptions on provider discovery. Distributions: fix misleading inline docs on Negative-Binomial. Generate: linear integer ranges Root Finding: extend zero-crossing bracketing in derivative-free algorithms. Window: periodic versions of Hamming, Hann, Cosine and Lanczos windows. Special Functions: more robust GammaLowerRegularizedInv (and Gamma.InvCDF). BUG: ODE Solver: fix bug in Runge-Kutta second order routine ~Ksero

This package has no dependencies.

Version Downloads Last updated
5.0.0 21 3/4/2024
5.0.0-beta02 19 3/9/2024
5.0.0-beta01 21 3/9/2024
5.0.0-alpha16 16 3/9/2024
5.0.0-alpha15 24 3/9/2024
5.0.0-alpha14 20 3/9/2024
5.0.0-alpha11 24 3/9/2024
5.0.0-alpha10 15 3/9/2024
5.0.0-alpha09 20 3/9/2024
5.0.0-alpha08 17 3/9/2024
5.0.0-alpha07 17 3/9/2024
5.0.0-alpha06 17 3/9/2024
5.0.0-alpha05 19 3/9/2024
5.0.0-alpha04 17 3/9/2024
5.0.0-alpha03 18 3/9/2024
5.0.0-alpha02 18 3/9/2024
5.0.0-alpha01 19 3/9/2024
4.15.0 25 3/4/2024
4.14.0 22 3/4/2024
4.13.0 16 3/4/2024
4.12.0 24 3/4/2024
4.11.0 22 3/4/2024
4.10.0 28 3/4/2024
4.9.1 20 3/4/2024
4.9.0 23 3/4/2024
4.8.1 24 3/4/2024
4.8.0 17 3/4/2024
4.8.0-beta02 14 3/9/2024
4.8.0-beta01 20 3/9/2024
4.7.0 18 3/4/2024
4.6.0 18 3/4/2024
4.5.0 21 3/4/2024
4.4.1 16 3/4/2024
3.20.2 19 3/4/2024
3.20.1 18 3/4/2024
3.20.0 16 3/4/2024
3.20.0-beta01 17 3/9/2024
3.19.0 16 3/4/2024
3.18.0 17 3/4/2024
3.17.0 18 3/4/2024
3.16.0 20 3/4/2024
3.15.0 17 3/4/2024
3.14.0-beta03 21 3/9/2024
3.14.0-beta02 18 3/9/2024
3.14.0-beta01 19 3/9/2024
3.13.1 23 3/4/2024
3.13.0 18 3/4/2024
3.12.0 18 3/4/2024
3.11.1 16 3/4/2024
3.11.0 17 3/4/2024
3.10.0 20 3/4/2024
3.9.0 17 3/4/2024
3.8.0 18 3/4/2024
3.7.1 23 3/4/2024
3.7.0 20 3/4/2024
3.6.0 22 3/4/2024
3.5.0 24 3/4/2024
3.4.0 18 3/4/2024
3.3.0 21 3/4/2024
3.3.0-beta2 16 3/4/2024
3.3.0-beta1 20 3/4/2024
3.2.3 21 3/4/2024
3.2.2 17 3/4/2024
3.2.1 18 3/4/2024
3.2.0 20 3/4/2024
3.1.0 26 3/4/2024
3.0.2 18 3/4/2024
3.0.1 21 3/4/2024
3.0.0 19 3/4/2024
3.0.0-beta05 18 3/9/2024
3.0.0-beta04 21 3/9/2024
3.0.0-beta03 18 3/9/2024
3.0.0-beta02 17 3/9/2024
3.0.0-beta01 16 3/9/2024
3.0.0-alpha9 21 3/9/2024
3.0.0-alpha8 16 3/9/2024
3.0.0-alpha7 17 3/9/2024
3.0.0-alpha6 18 3/9/2024
3.0.0-alpha5 16 3/9/2024
2.6.1 22 3/4/2024
2.6.0 22 3/4/2024
2.5.0 18 3/4/2024
2.4.0 22 3/4/2024
2.3.0 20 3/4/2024
2.2.1 20 3/4/2024